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Section I

INTRODUCTION

Carrying weapons internally in high performance fighter-bomber aircraft

offers many potential benefits; such as: increased combat range, greater

maneuverability, higher target penetration speed (less time over the target),

elimination of weapon aerothermal heating problems during transit to the

target site, and reduced detection signatures. However, opening weapon bay

doors at high aircraft speeds can result in extreme flow instabilities within

the open weapon bay cavity. The internal flow instability and associated

severe aeroacoustic phenomena can compromise the aircraft structure and crew,

the weapon sensing devices and structure, and the stable release of the

weapon.

During specific flight conditions and with some current weapons, aircraft

speed reductions are required prior to opening weapon bay doors, thereby

increasing time (and vulnerabiity) over the target. Weapon bay cavities and

aeroacoustic suppression devices should be designed to overcome this loss in

aircraft capability. To accomplish this, one must understand well the

internal flow in open weapon bay cavities. The current work is directed to

this problem.

The experiments described herein were designed to provide fundamental

aerodynamic and aeroacoustic data for a generic set of rectangular cavities

for both subsonic and supersonic flows. These experiments supplement earlier

experiments conducted using the same model for transonic flows (Reference 1).

1Clark, R.L., "Weapons Bay Turbulence Reduction Techniques," Flight Dynamics

Laboratory, Wright-Patterson AFB, AFFDL T• 75-147 F*¶, Dec 1975.
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Section II

EXPERIMENTAL PROGRAM

MODEL & INSTRU.ENTATION

In lieu of testing a particular airplane configuration, a "flat plate"

cavity flow model (Figure 1) was fabricated and tested. The flat plate model

is representative of the lower surface of typical fighter-bomber aircraft

capable of carrying stores internally (Figure 2). The flat plate model can
accommodate a generic group of several, interchangeable, rectangular cavities

(Figures 1 and 3) having various length to depth ratios.

The opening of all cavities tested is 7.25 in. downstream of the sharp

leading edge of the flat plate model. By using various insert blocks, the
length to depth ratios of the cavities are variable from appoximately 5 to 10
(Figures 1 and 3, and Reference 2). All cavities have a width of 2.5 in.

(Figure 1).

Photographs of some of the cavities tested are shown in Figure 4. Shown

in the photographs is the yoke support system for the model. This suspension

system was designed to minimize the propagation of base flow effects into the
cavity, while maintaining a small model cross section (particularly important

for the transonic tests, Reference 1). The model yoke support system is

attachable to the AFWAL Trisonic Tunnel sting.

Aeroacoustic suppression fences (spoilers) are attachable to the flat

plate surface just upstream of the cavity opening. Both tLe "saw-tooth" and

the "perforated" fence (Figure 5) are about 0.2 in. high, which is the approx
imate thickness of a turbulent boundary layer on the flat plate surface at the

start of the cavity (References 1 and 3).

2Kaufman, L.G.II, Maciulaitis, A., Foreman, K.M. and Danos, S.J., "Pretest
Report for Joint AFFUL/GAC Program on Flows Past Weapons Cavities," Grumman
Aerospace Corporation, Research Department Memorandum RM-656, July 1978.

3 Clark, R.L., Kaufman, L.G.II and Maciulaitis, A., "Aeroacoustic Measure-
ments for Mach 0.6 to 3.0 Flows Past Rectangular Cavities," AIAA Paper
80-0036 presented at 18th Aerospace Sciences Meeting in Pasadena, CA,
'Jan 1980.
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The model instrumentation includes 35 surface static pressure taps, 21

silicon diaphragm transducers (to measure trdrlsient pressures), and three
thermocouples. Locations of the instrumentation on the cavity ceiling,

sidewalls and bulkheads, as well as on the surrounding flat plate surface, are

shown in Figure 6.

Scanning valves and pressure transducers are used to measure the static
pressures (Reference 4). The transient pressure (acoustic) data are measured
using miniature differential pressure transducers*. Screens over the

transducers prevent damage from extraneous particles in the tunnel flow and

greatly increase the life expectancy of the transducers. The transducers have

a resonant frequency at 125 kHz and can measure transient pressur- differences

up to 25 psi. They are well suited for these experiments (Reference 2).

The AC-coupled amplified voltage signal from each transd'!"er is pro-

cessed "on-line" and recorded on tape recorders for latec narrow band

frequency analysis (approximately 8 Hz bandwidth) "off-line" (Figure 7). On-

line, the signals are reduced to rms voltages and converted to rms pressures

in psi. The pressures are nondimensionalized by Q and converted to SPL (db)

using:

SPL(dB) 20 g Prms (psi) 10  (
S2log 2. 90075( psi) J

SPL(0B) = 180 + 20 log (Prms/2. 9 0 0 7 5 )

Selected transducers are also processed on-line using a Fourier analyzer. All

of the acoustic and static pressure data are stored in the mini computer for

off-line reduction, listing and plotting.

In addition to the surface instrumentation, forward- and rearward- facing

total pressure probes are attachable to the cavity ceiling (Figure 8). The

total pressure measurements are used in determining the velocity of the shear

flow over the center of the L/D = 5.583 cavity in the plane of the flat plate

surface. The opening of the total pressure probe is directly beneath static

White, H.L., "Trisonic Gasdynamic Facility User Manual," AFFOL TM 73-82
FXM, June 1973.

Kulite Model XCQ-093-25 with "B" screens.
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pressure tap No. 15 (Fig. 6). A secondary function of the total pressure

probes is to establish the extent to which its presence affects the acoustic

and static pressure measurements.

TUNNEL & TEST CONDITIONS

The Trisonic Gasdynamics Facility of the Air Force Wright Aeronautical

Laboratories is located at Wright-Patterson AFB, Ohio, As described by White

(Reference 4), the Trisonic Gasdynamics Facility is a closed-circuit, variable

density, continuous-flow wind tunnel capable of providing subsonic, transonic

and supersonic flows through a range of Mach numbers from 0.23 to 3.0.

Subsonic nozzle blocks can provide flows in a 2-ft-square test section for

Mach numbers varying from 0.23 up to 0.85. There is a replaceable 15 in.

square transonic test section with slotted walls. Replaceable supersonic

nozzle blocks are available for Mach 1.5, 1.9, 2.3, and 3.0 flows in a 2-ft-

square test section. The maximum attainable stagnation pressure is: 19.8 psi

for the subsonic nozzle blocks, 27.8 psi for the transonic nozzle blocks, and

29.2 psi for the supersonic nozzle blocks. The stagnation temperature of the

tunnel flow is 560'R for all nozzle blocks (Reference 4).

Photographs of the cavity flow model mounted in the tunnel test section

are shown in Figure 9. The Mach 3.0 nozzle blocks are installed in the
tunnel, and a boundary layer trip is attached to the model to make sure there

is a turbulent boundary flow upstream of the cavity. The boundary layer trip

consists of fine grit glued to the flat plate surface at a location 1 in.

downstream of the leading edge of the model.

Results of transonic flow experiments on the model are described by Clark

(Reference 1). The cavity flow results presented here were obtained using the

variable Mach number subsonic nozzle blocks and selected supersonic nozzle

blocks. The tunnel flow test conditions for the results presented herein are

indicated in Table I.

TABLE I - TUNNEL FLOW TEST CONDITIONS
6w

M. Re/1 O6ft

0.58 - 0.80 2.06 - 2.40
1.5 2.7
2.3 2.9 & 3.9
3.0 2.8 -

4



The boundary layer was naturally turbulent at the cavity leading edge for

most cases, but the model was tested both with and without the trip in several

instances to ascertain firmly turbulent boundary layer effects. The boundary

layer trip is evident in Figure 9.

Several profile schlieren flow photographs, taken during many tunnel

runs, are useful in ascertaining the stability of the cavity flow.

The movement of oil drops applied to the surface of the model is helpful

in determining locations of flow separation and the symmetry of the surface

flo. These photographic data are given along with corresponding pressure

data.

The flat plate portion of the model is aligned with the free stream flown

direction in all except three test cases mentioned in Section 111, when the

model is slightly pitched.

Particular tunnel flow conditions and model configurations are listed in

Section 111.
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Section III

EXPERIMENTAL RESULTS

Data are presented for the tunnel flow conditions and model config-

urations listed in Table II. The subsonic flow static data are presented
first. Following these are the static data for the supersonic tunnel flows

(Mach 1.5, 2.3 and 3.0). For each of the tunnel Mach number flow regimes,

data are presented first for the L/D = 5.1 cavity and then for the L/D = 5.6,

6.2, and 9.9 cavities. Static pressure data (and total pressure probe data
when available) are presented first for each Mach number regime and cavity

length-to-depth ratio. Accompanying profile schlieren photographs are then

shown for the same flow conditions. Observations of oil drop flow experiments

are described for the configurations indicated in Table I1.

Three types of aeroacoustic data are presented in this report. Measure
ment results are given as overall (covering the entire sound pressure

frequency range between 0.1 and 5 kHz) levels (SPL), as intensity spectra in
the frequency domain for particular pressure transducers and, lastly, as

spatial intensity distributions of various oscillatory pressure modes. Since

earlier analysis had established the existence of high-intensity noise at very
low frequencies, which probably was tunnel-related, it was decided to filter

out all signals below 0.1 kHz. Unfortunately, this decision made it imposs-

*ible to use the overall SPL values directly either from the on-line computer

memory, or from the test printout. Although the acoustic recording instru-

mentation had a flat response up to 10 kHz, in order to gain better resolution
data were frequency analyzed up to 5 kHz. Comparisons with sample results

analyzed to 10 kHz showed that in a few instances there were oscillatory fre-

quency modes above 5 kHz which, naturally were not picked up in our frequency
analysis. However, this is of little importance, inasmuch as the intensities

above 5 kHz were significantly lower than those below 5 kHz. Overall acoustic

data distributions are shown for the same test configurations as for the

static pressure distributions shown.

The cavity was instrumented with 21 Kulite pressure transducers. Each

transducer yields a pressure-time history for every tunnel run. It was

necessary to limit the number of transducer data frequency analyses presented

6



TABLE IT TEST CONDITIONS AND CONFIGURATIONS

M. 0.58 - 0.80 1.5 2.3 3.0

Re./106 ft 2.2 - 2.4 2.5 - 2.8 2.9 - 3.9 2.7 - 2.9

Boundary Lyr Trip off on off off on on

L/D = 5.1
No fence P P P 0 P
Perforated fence 0 P
Sawtooth fence P p p

L/D = 5.6
No fence P 0 P P P 0 P
Total pres. probe I P p p P
Perforated fence 0 0 P p
Sawtooth fence A 0 P 0 P P p

L/D = 6.2
No fence P P p p p
Perforated fence P Pp
Sawtooth fence P P

L/D = 8.9
Perforated fence

L/D = 9.9
No fence P A P P P 0 P
Perforated fence P p p
Sawtooth fence ' P p p

A Also includes data for small angles of attack • 0
0 Oil drop flow experiments
P Static and transient (acoustic) pressure data and profile schlieren flow

photographs

7



to a reasonable research effort. Therefore, the acoustic data presented

herein does not constitute a complete set of all the data obtained. Instead,

the limited acoustic data presented are intended to document the important

dependences and trends by a judicious selection of the experimental results.

Unless otherwise stated, the SPL values are computed using 2.90074 x 10-9

psi (20 pPa) as the reference pressure.

Detailed acoustic (transient) pressure spectrum data are shown for

selected transient pressure gauges and configurations. (Several hundred plots

would be required to show all of the transient pressure data).

A right-hand rectangular coordinate system is used (Figure 10). The

origin is in the central plane at the leading edge of the cavity; x is

streanwise, y is spanwise, and z is vertical (positive upwards, towards the

cavity ceiling).

STATIC EXPERIMENTAL RESULTS

Static and total pressure data are shown in dimensionless coefficient

form:

p-pý. C = -~(2)

p 0.7 pM2

Pressure coefficient values are plotted versus distances nondimensionalized

using the cavity length, width and depth. Acoustic data are shown in sound

pressure levels (dB) (see Equation 1).

Subsonic

Static pressure coefficient distributions obtained on the shortest cavity

model (L/D 5.067) are essentially invariant for 0.60 < M. 4 0.76 (Figures 11

- 16). The pressures are nearly the same as the free stream static pressure

except in the aft portion of the cavity, where there is a small increase in

pressure. On the surface duwnstream of the cavity (x > L) there is a

separated flow bubble (evidenced by negative pressure coefficients). The only

discernable change in the pressure coefficient distributions, for 0.60 ( M, 4

0.76, is that for the pressure on the surface immediately downstream of the

cavity: Cp = -C.46 for M. = 0.60 and Cp = -0.52 for M,, = 0.74. Profile

schlieren flow photographs were investigated and revealed no anomalies for

these subsonic flows (Figure 17).

8



Results obtained for a longer and deeper cavity (L/D = 5.583) reveal more

pronounced Mach number effects through the subsonic flow regime, although the

L/D ratio is just 10 percent larger than for the shortest cavity. Pressure

coefficient distributions are shown for 0.60 4 M,. < 0.74 (Figures 18 - 24);

distributions at the intermediate Mach numbers change smoothly and

continuously from the lowest to the highest subsonic Mach number. The most

pronounced distribution, at Mach 0.74, indicates: 1) a local thinning of the

boundary layer just upstream of the cavity, 2) separated flow over the forward

portion of the cavity, 3) reattachment on the aft portion of the cavity

ceiling, and 4) separated flow on the surface downstream of the cavity.

Profile schlieren flow photographs for this cavity configuration reveal

no evidence of either compression or expansion waves. A small region of sepa-

rated flow is noticeable at the aft shoulder of the cavity (Figures 25 - 27).

Oil drop flow photographs support the observation of separated flow in

the forward portion of the cavity, and vortices of reversed flow after

reattachment on the after portion of the cavity (Figures 28 - 31). These

photographs indicate the complex, three-dimensional nature of the surface

flow, which appears to be symmetric about the centerline of the cavity.

Adding the sawtooth fence (referred to as "large" fence in plots) to this

model configuration results in substantially different pressure distri-bution

(Figures 32 - 34). The flow bridges the cavity and reattaches near the aft

corner, with no separation on the surface downstream of the cavity. There are

no significant changes in the pressure distributions for 0.60 C Me ; 0.74.

Oil flow photographs indicate two vortices within the cavity; the aft

reverse flow vortex having a stronger surface shear flow than the forward,

shorter, vortex. Sample oil drop flow photographs for the sawtooth and

perforated fence configurations are shown in Figures 35 - 37 and in Figures

38-40.

The forward facing probe has negligible effect on the pressure distribu-

tions either without or with the sawtooth fence attached (Figures 41 - 46).

However, the sawtooth fence strongly affects the total pressure probe

measurements. Without the fence the probe measures pressure values typical of

those within a shear layer. With the fence, the forward facing total pressure

probe measures pressures very nearly equal to the static pressure on the

9
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cavity ceiling; this suggests that the probe was in the separated flow region

caused by the sawtooth fence.

The aft-facing total pressure probe does not change the static pressure

distributions with or without the sawtooth fence (Figures 47 - 57). In all

cases the aft-facing probe recorded smaller pressures than the static pressure

on the cavity ceiling. The model was pitched at + 3/40 and at - 3/4° for two

test runs; the plotted results were indistinguishable from those obtained at

zero angle of attack.

A somewhat longer cavity (L/D = 6.167) exhibits similar static pressure

distributions to those obtained for the L/D = 5.583 cavity (Figures 58 -

60). Profile schlieren flow photographs indicate little more than a small

disturbance at the aft end of the cavity (Figure 61).

Pressure coefficient distributions for the long shallow cavity (L/D =

9.867) ir,"cate: 1) separation from the forward shoulder of the cavity, 2)

reattachment on the cavity ceiling, and 3) a separated flow bubble downstream

of the cavity (Figures 62 - 65). There is very little difference in the

distributions for 0.60 < M. 4 0.74. These data were obtained with a boundary

layer trip strip located I in. downstream of the flat plate leading edge.

Oil flow photographs (Figures 66 - 68) indicate reverse flow in the

forward portivn of the cavity, attached flow on the middle portion of the

cavity cei.-' and a separated flow region ii the aft portion of the

cavity. Ther 're symmetric vortices in the after portion of the cavity and

also on the plate surface downstream of the cavity. Profile schlieren flow

photographs indic'te a small separation bubble at the aft shoulder of the

cavity (Figure 6ý,.

The additiL4 of either the perforated or sawtooth fence reduces the

pressures in the aft portion of the cavity and reduces the extent of the

separated flow bubble downstream of the cavity (Figures 70 - 76). Profile

schlieren flow photographs indicate a substantial increase in the thickness of

the shear layer when either fence is added to the model (Figures 77 and 78).

Oil flow photographs indicate separated, reverse flow throughout the entire

cavity (Figures 79 - 82), with nearly "dead" air in the forward portion of the

cavity.

10



The pressure coefficient distributions for the smallest cavity, (Figures

83 and 84) have small positive values instead of the small negative values

recorded for subsonic Mach numbers. The sawtooth fence causes a larger region

of separated flow, resulting in very small pressure coefficients on the cavity

ceiling, and reduces the pressures on the aft bulkhead. Profile schlieren

flow photographs give further evidence of the increased depth of the shear

layer with the fence (Figures 85 and 86).

The pressure coefficient distributions for the longer and deeper cavity

(L/D = 5.583) are positive for M®, = 1.5, whereas they are negative for sub-

sonic Mach numbers (Figure 87). The sawtooth fence reduces the pressures on

the cavity ceiling, (Figure 88), similarly to the effects of adding the fence

in subsonic free stream flows, (Figures 18 and 32). The distributions are

similar to those for the smaller cavity (L/D = 5.067).

Profile schlieren flow photographs again indicate an increased shear

layer thickness when the saw-tooth fence is attached to the model (Figures 89

and 90).

Oil flow photographs indicate reverse flow in the aft portion of the

cavity and very little shear in the forward portion of the cavity (Figures 91

- 94). When the perforated fence is attached upstream of the cavity, there

results a marked asymmetry in the forward portion of the cavity (Figures 95 -

98). The saw-tooth fence also results in an asymmetric flow on the cavity

ceiling (Figures 99 - 101).

The problem of flow asymmetry deserves some elaboration, especialy since

it was observed not only in oil flow photographs but also was established in

terms of the static pressure distributions. The observed pressure and oil
flow asymmetries are not always compatible. In some instances the oil flow

indicted a clockwise asymmetry whereas the static pressure distribution for
the same configuration indicated a counterclockwise asymmetry. These

anomalies can be explained only by speculation at the present time. The oil

flow work was done at the end of the entire test series, and the possibility

exists that some of the flows are bistable, requiring the slightest changes

(such as the presence of oil itself, or a minute asymmetry in cavity shape) to

form an asymmetry of one type, or another. This remains to be explored in

the future.
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The forward facing probe has essentially no effect on the pressure

distribution on the model, either with or without the sawtooth fence

attached. No shock wave emanates from the probe, which is in a shear layer.

The fence thickens the shear layer and results in a considerably lower

pc'essure read by the forward-facing probe, (Figures 102 and 103). Profile

schlierens, without and with the sawtooth fence, are shown in Figures 104 and

105.

Similarly, the aft-facin9 probe has no effect on the pressure distri-

butions, either without (Figures 106 and 107) or with (Figure 108) the saw-

tooth fence attached to the model. Again, the fence increases considerably

the thickness of the shear layer (profile schlieren flow photographs, Figures

109 and 110).

The somewhat longer cavity (L/D = 6.167) results in pressure

distributions very similar to those for the L/D =5.583 cavity (Figures 111 and

112). The sawtooth fence increases the thickness of the shear layer (Figures

113 and 114).

The long shallow cavity (L/D = 9.867) was tested at a small (0.751) angle

of attack as well as at zero angle of attack. The small angle of attack had

essentially no effect on the pressure coefficient distribution. The pressure

distributions indicate flow reattachment to the cavity ceiling near the middle

of the cavity. The pressure rise in the aft portion of the cavity is more

pronounced when the sawtooth fence is attached to the model (Figures 115 -

117).

Profile schlieren flow photographs (Figures 118 - 120) reveal similar

shear layer thicknesses for zero and 0.75' angles of attack, and whether or

not the fence was attached to the model.

With no fence, oil flow experiments indicate reverse flow with two

vortices in the aft portion of the cavity, symmetric about the center plane

(Figures 121 - 124). With the perforated fence, oil flows indicate an

increased trend to flow from the sides of the cavity to the center plane

(Figures 125 - 127). A slightly shorter cavity (L/D = 8.933) exhibits a non-

symmetric oil pattern on the cavity ceiling (Figures 128 - 131). Oil flows

with the sawtooth fence again exhibit a symmetric reverse flow (Figures 132 -

134).
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M,.. -2.3

Pressure distributions in the smallest cavity (L/D 5.067) are shown in

Figures 135 - 138) for different Reynolds numbers and without and with the

sawtooth fence attached to the model. Except for the higher density, profile

schlieren flow photographs indicate no noticeable changes in the flow pattern

or shear layer thickness at either Reynolds number, without or with the

sawtooth fence attached to the model (Figures 139 - 142).

Pressure coefficient distributions on the cavity ceiling for the L/D

5.583 cavity are similar at M, z 2.3 to those for M., = 1.5, (Figure 143).

However, the pressures, particularly those on the aft bulkhead, are reduced

when a boundary layer trip is applied to the model (Figure 144). Both the

perforated and sawtooth fences reduce the pressure levels (Figures 145 - 147).

Without a fence, profile schliprpi flow photographs indicate boundary

layer transition near the cavity forward bulkhead when there is no trip. The

addition of the grit strip causes boundary layer transition near the leading

edge of the flat plate model (Figures 148 and 149). The fences increase the

thickness of the shear layer over the forward portion of the cavity (Figures

150 - 152).

The forward facing probe does not significantly change the pressure

coefficient distributions on the cavity ceiling and sidewalls. A small change

is evident on the aft bulkhead, (Figure 153). Faint waves emanating from the

probe are visible in the original, glossy, schlieren photographs (Figure 154).

The boundary layer trip does not affect the pressure coefficient

distributions in the larger (L/D = 6.167) cavity (Figures 155 and 156).

However, as evidenced by profile schlieren photographs (Figures 157 and 158),

it is effective in causing earlier transition of the boundary layer.

The perforated fence reduces the pressure coefficients on the aft

bulkhead (Figure 159). Reynolds number effects are negligible on the pressure

distributions (Figures 159 and 160). The sawtooth fence (Figure 161), has

essentially the same effect on the pressure coefficient distributions as the

perforated fence. Except for the higher density, Reynolds number effects on

the flow pattern are not noticeable in profile schlieren flow photographs

(Figures 162 and 163).

13



Pressure coefficients over the long shallow cavity (L/D - 9.861) are

nearly constant (Figures 164 and 165). The boundary layer trip slightly

reduces the pressures on the cavity ceiling. Again, the boundary layer trip

is effective in causing earlier transition, but does not result in a

significantly thicker shear layer over the aft portion of the cavity (Figures

166 and 167). Similarly, the perforated fence has little effect on the

pressure coefficient distributions, (Figure 168). It does increase the shear

layer thickness over the cavity (Figure 169).

The sawtooth fence strongly effects the pressure distributions (Figures

170 and 171). The flow is separated in the forward portion of the cavity,

reattaches on the cavity ceiling, and results in large pressure coefficient

values nn Lhe aft bulkhead. Repeat runs indicate consistency in these

pressure distributions. The schlieren flow pattern was observed to be

slightly unsteady during these test runs (Figures 172 - 175).

M- =3.0

Pressure coefficient distributions over the smallest cavity (L/D = 5.067)

are repeatable and have small positive values over the cavity ceiling (Figures

176 - 178). Oil flow patterns for this configuratiGn are shown in Figures 179

and 180. The perforated fence has very little effect on the pressure

distributions (Figures 181 and 182). Oil flow photographs for this

configuration are shown in Figures 183 and 184. The sawtooth fence also has I
little effect on the pressure distribution (Figure 185). Schlieren I
photographs (Figures 186 - 188) show the increase in the shear layer thickness

caused by the fences.

The larger (L/D = 5.583) cavity has very similar static pressure

coefficient distributions (Figures 189 and 190). Oil flow photographs for

this configuration are shown in Figures 191 and 192. The perforated small

fence does not significantly affect the pressure distributions (Figures 193

and 194), but does thicken the shear layer (Figures 195 and 196). The

sawtooth fence effects on the pressure distribution and on the flow f~eld are

also small, similar to those caused by the perforated fence (Figures 197 and

198). The total pressure measured using the forward facing probe is indicated

in Figure 199. Schlieren photographs, with the probe installed in the L/D z

5.583 cavity, are shown in Figures 200 and 201. In Figure 201, the model is

pitched 5 degrees nose up.

14
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The larger (L/0 - 6.167) cavity has very similar pressure distributions,

(Figures 202 - 205). Except for the thickening of the shear layer (Figures

206 and 207), the static flow does not appear to be affected by the perforated

fence.

The long shallow cavity (L/D = 9.867) has pressure coefficient distribu-

tions similar to the other (smaller LID ratio) cavities at Mach 3.0. No flow

reattachment is evident on the cavity ceiling, (Figures 208 and 209). The

data are repeatable. Oil flow photographs for this configuration are shown in

Figures 210 and 211. The perforated fence does not affect the pressure

distributions, but results in a thicker shear layer (Figures 212 - 215).

Also, the sawtooth fence has little effect on the flow (Figures 216 and 217).

ACOUSTIC EXPERIMENTAL RESULTS

Overall Acoustic Pressure Level Distributions

Subsonic

An examination of the overall acoustic pressure distributions in and

around the L/D = 5.1 cavity at the subsonic Mach numbers (0.6 to 0.76) at

which data are available (Figures 218 - 220) leads to the following observa-

tions: The highest acoustic pressure invariably was measured at the mid-

height point of the rear bulkhead. Its value peaked at M. - 0.71, at a value

of about 158 dB. The distributions within the cavity are not quite

symmetrical, the values in the central longitudinal plane developing a I
distinct dip in the forward cavity portion with increasing M4ach number, while

the corresponding values on the side walls differ by as much as 5 dB in the

forward section of the cavity. This difference is practically Mach number

independent and decreases toward the rear of the cavity. Pressures on the

side walls are usually higher than those in the central plane, except at the

rear of the cavity.

Similar trends are also obseriable from the overall acoustic pressure

distributions for the somewhat shallower, L/D = 5.6, cavity (Figures 221 -

225), however, for this cavity the peak value on the rear bulkhead continued

to rise with Mach number, reaching 164 dB at M, = 0.74. With the generally

rising pressure levels, the nonsymmetry has also increased, exceeding 7 dB.

Center plane pressures are lower than the port wall values by as much as 10)

dB.
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Figures 221 - 225 also illustrate the beneficial effect of the sawtooth

st,-nression fence in lowering the acoustic pressure level distributions. The

amount of reduction is Mach number dependent, reaching a maximum of over 10 dB

at M®, - 0.7. Figures 224 and 225 show that the presence of the fence reduced

the pressure asymmetry to within experimental error (< 2 dB): however, note

that the "depression" of the central plane values practically remained

unaltered, being uniformly displaced downward (see e.g., Figures 224 and 225).

Figures 226 - 228 for a slightly shallower cavity (L/D = 6.2) show no new

phenomena, except that the maximum acoustic pressure values on the rear

bulkhead are the same (160 dB) for M. - 0.6 and 0.7, decreasing for M., = 0.74.

The asymmetry is still there but is slightly weaker than for L/D = 5.6 cavity.

Also, note that the pressure on the forward bulkhead is relatively lower than

for deeper cavities.

Figures 229 - 232 show subsonic acoustic data for the shallowest cavity

investigated, L/D - 9.9. All results were obtained using a boundary layer

trip. Both types of suppression fences were used. The general trends are

similar to those already described fur the deeper cavities, however, the maxi-

mum acoustic pressures on the rear bulkhead and the general pressure level are

lower than for the deeper cavities, indicating that there must be a L/D value

for the highest maximum pressure values. The extremely low value on the port

wall at X/L = 0.4 for M. = 0.6 is somewhat in doubt. The frequency spectrum

of that particular signal is singularly free of any model peaks, such that it

is impossible to say whether it is real, or represents the output of a defec-

tive pressure transducer. The effectiveness of both suppressor fences was

very similar and much smaller than for the deeper cavities (2 - 3 dB on the

rear bulkhead).

An attempt was made to correlate the asymmetries in tne acoustic pressure

level distributions with those of the static pressure. A few sample calcula-

tions proved beyond doubt that the latter could not be the same or be caused

by the acoustic pressures, since the orders of magnitude involved are greatly

different; in other words, the largest acoustic asymmetries represent

negligibly small differences in terms of the corresponding pressure

coefficients, Cp. As an illustration, we can compare the corresponding values

at about X/L = 0.9 in Figures 58 and 226. The 5cB difference between the

centerline and starboard wall values in Figure 226 corresponds to a pressure
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difference of 5.22 x 10- 9 psi. The 0.12 difference in C in Figure 58 is
p

equivalent to 8.48 psi for p.. 8.236 psi which is many orders of magnitude

higher. Similar results could be shown from Figures 62 and 229 and others.

M-- 1.5

Acoustic pressure level distributions for all four different cavities at

M, = 1.5 are shown in Figures 233 - 236. As at subsonic flow velocities, the

maximum acoustic pressure always is found on the ,rear bulkhead. It peaks at

165 dB for L/D = 5.6, just 1 dB above the highest subsonic value. The point

for the L/D = 5.6 cavity at Z/D = 0.5 on the redr bulkhead is of doubtful val-

idity, since its frequency spectrum is uncharacteristically flat; besides, it

is difficult to visualize an acoustic field wnere points 0.375 in. apart would

have such difference in sound pressure level. The effectiveness of the

sawtooth fence as an acoustic pressure suppressor is highest in the L/D = 5.6

cavity, diminishing noticeably as the cavity becomes shallower.

M_ = 2. 3

Figures 237 and 238 show the acoustic pressure distribution for the L/D =

5.1 cavity at M. = 2.3. Compared to data at M. = 1.5., apparently both the

general levels and the maximum values on the rear bulkhead have decreased.

Otherwise the figures illustrate the familiar trends: the asymmetrv inside

the cavity, the dip in the central plane and the beneficial effect of the

sawtooth suppression fence. In addition, Figure 237 shcws a distinct Reynolds
number effect, i.e., the sound pressure rises by a few dB, when the Reynolds

number is increased from below 3 to 3.9 (106/ft).

The acoustic pressure level distributions for the L/D = 5.6 cavity are

illustrated in Figures 239 - 241 for a variety of operating conditions,

including the utilization of a boundary layer trip and both suppression

fences. Compared to the deepest cavity, the maximum values on the rear
bulkhead have increased by about 6 dB to a value of 159 dB. The boundary layer

trip accounts for about 2 to 3 dB reduction in SPL. A reduction of similar

magnitude has been achieved with either of the suppressor fences, the

perforated fence being more effective by about 2 dB,

Acoustic oressure level distributions covering the same set uf variables

plus a higher Reynolds number for the LiD = 6.2 cavity are shown in Figures

242 - 245. At this Mach number the installation of a boundary layer trip is

17
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more beneficial as the cavity becomes shallower. As for L/D 5.6, the

perforated fence is superior to the sawtooth in effecting further acoustic

pressure reductions. The maximum reduction attributable to the boundary layer

trip and the perforated fence amounts to about 10 dB, with the contributions

about evenly divided. With boundary layer trip and perforated suppressor

fence installed, raising the Reynolds number from 3 to 3.9 x 106 /ft increased

the acoustic pressure by about 3 dB (Figure 245). No significance should be

attached to the point at X/L = 0.85 on the starboard side with boundary layer

trip and perforated fence in Figures 243 - 245, since a closer scrutiny of its

frequency spectrum strongly suggests a defective signal. The same statement

applies also to the Figures 247 and 248 for the shallowest (L/D = 9.9 cavity).

The beneficial effect of the boundary layer trip in the L/D = 9.9 cavity

is similar to that i, the deeper cavities; however, this is not true for the

suppression fences. Interestingly, in this shallow cavity even the perforated

fence has mostly a marginally detrimental effect on SPL, whereas the sawtooth

fence increases the acoustic pressure significantly, as shown in Figure 248.
Finally, note that the SPL in this cavity is about 5 dB lower than 'n the L/D

= 6.2 cavity.

M_= 3.0

All tests at M. = 3 were conducted with the boundary layer trip install-

ed. Only the perforated suppressor fence was used during the acoustic
pressure measurements test phase. It is clear from the results shown in

Figures 249 - 252 that both the general SPL levels and their maximum values

Swere lower at M. = 3 than at M. = 2.3. In most instances the presence of the
perforated fence resulted in negligible changes in SPL. In some cases the

* effect of the suppressor was to increase the acoustic pressure. No explanation

can be offered as to why the data point with the fence at X/L = 0.45 in Figure

250 is so high. Its frequency spectrum looks normal but could hide a spurious

dc component. In contrast to data at lower Mach numbers, at M., = 3 the

maximum acoustic pressures sometimes are at the rear of the cavity ceiling and

not on the rear bulkhead.
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Survey of the Suppressor Fence Effects on Acoustic Pressures

Having just completed a discussion of overall acoustic pressures as a

function of test conditions, it is now expedient to examine some of those

results in greater detail, i.e., on the basis of the frequency spec:ra. As

mentioned earlier, practical space considerations restrict the number of

spectra that can be presented. The spectral analysis was carried out for a Af

= 8.14 Hz. Because it exhibited the highest acoustic pressures, we have

selected the L/D = 5.6 cavity at M. = 1.5 as the basic reference case, and in

this section shall present spectra for this cavity at various Mach numbers and

for various cavities at the M, = 1.5 number. In each instance, spectra at

three spatial locations are shown with and without a suppression fence. In

general, the acoustic pressure reaches its maximum value at the X/L = 1, Z/D =

0.25 location corresponding to the rear bulkhead. Also shown in the figures

are the theoretically predicted mode frequencies calculated using the method

presented in Reference 10 and summarized herein (Equation (3)). These

analytical prediction methods and comparisons of the calculated results with

experimental data are described in the following section.

Subsonic Data for the L/D = 5.6 Cavity

In practically all cases, the signal consists of the superposition of a

broadband "noise" which falls off with frequency and a certain number of well-

defined, or sufficiently well-defined peaks which correspond to the different

oscillatory modes. As expected, the signals always peak on the rear bulkhead.

Within the Mach number range covered by Figures 253 - 255 (Mý = 0.6 to 0.74)

the number of modes contributing to the signal strength did not exceed 5; in

most cases the number was even smaller. Mode 1 is usually ill-defined and is

rather weak when tests are run without any suppressor fence. The general

tendency is for one of the lower modes, the second, or third, to predominate

at all three spatial positions at a given Mach number; however, there are

exceptions to this rule.

The installation of a sawtooth suppression fence has a twofold effect: it

lowers both the broadband acoustic pressure level and the magnitudes of the

modal peaks. The lowering of the modal peaks is selective; e.g., Figure 253

shows that relative to the broadband background the fence was only marginally

efficient in reducing the second mode but that it was very effective in

suppressing the higher modes. In fact, this observation is valid for all
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three subsonic Mach numbers at which tests were run.

M,, = 1.5 for All Four Cavities

The effect of varying the cavity length-to-depth ratio on the pressure

spectral distributions is shown in Figures 256 and 259 - 261. The suppression

fence was extremely effective in lowering the modal peaks for the deepest (L/D

5.1, Figure 259) and shallowest (L/O = 9.9, Figure 261) cavities. The

effect of the fence on broadband noise was only marginal for the deepest

cavity and practically nonexistent for the shallowest cavity. The situation

in the L/D = 6.2 cavity is similar to that of the L/D = 5.6 cavity to be

discussed next.

As Figure 256 illustrates for the L/D = 5.6 cavity, the spatial

distribution of the modal peaks can be rather complicated. This problem has

been treated in considerable detail in Reference 5, including an empirical

equation for the longitudinal variation in the mode shapes. Although the

second mode predominates at all three locations, note that at X/L = 0.02 there

are six well defined modal peaks. Five of these are still clearly discernible

on the rear bulkhead; however, just 0.05 L/D upstream of the bulkhead, on the

cavity ceiling only three modes stand out. The effect of the suppressor fence

is similar to that in the subsonic case, except that the suppression of the
modal peaks is much more effective.

i ~M_ = 2.3 •

Figure 257 illustrates the relevance of the higher modes for some flow

conditions. This fact has beer overlooked by many cavity flow investi-

gators. More will be said about this later. At M. = 2.3 the suppression

fence is only marginally efficient in lowering the broadband noise; however,

it is extremely effective in suppressing the modal peaks, especially towards

the rear of the cavity, where they are most important.

M_ =3. 0

At this Mach number the acoustic pressures are rather low, in general,

containing very few modal peaks, and the effect of the perforated fence

suppressor is beneficial but only marginally so. This is clearly shown in

Figure 258.

Acoustic Modal Pressure Distributions

20



Figures 262- 264 were prepared to show the distribution of modal in-

tensities throughout the interior and around the L/D = 5.6 cavity at three

Mach numbers: 0.7, 1.5 and 2.3 without any suppression fence. The modal SPL

values were simply read off from the SPL frequency spectra with no attempt

made to separate out the broadband contribution.

M. = 0.7

Figure 262 indicates that at M,, = 0.7 the cavity noise was dominated by

the third mode throughout most of the cavity, with the exception of the X/L

0.75 region. The order of importance of the higher modes depends on the

location within and in front and behind the cavity. Note that at X/L = 0.45

the fourth mode predominates both on the starboard and port walls and that

this is true for X/L = 0.75 in the central plane. Figure 262 presents a

rather complex picture of the mode distribution strongly suggesting that the

cavity oscillation is truly a three-dimensional phenomenon.

M,, = 1.5

The acoustic pressures at M. = 1.5 are mostly dominated by the second

mode but not without some exceptions (Figure 263, X/L = 0.25). Since more
modes could be identified at this Mach number, the picture is even more

complicated than for the subsonic case.

M. = 2.3

As seen from Figure 264, at M. = 2.3, depending on the locatior., the

oscillatory pressures are dominated by modes two and four. The ordering of

the lesser modes is also irregular, again strongly suggesting a complicated

three-dimensional oscillatory phenomenon. The higher modes are by no means
unimportant.

Summary of the Maximum Acoustic Pressure Variations with M,

In many applications, the maximum acoustic pressure within the cavity is

of primary interest, since it sets the ceiling of acoustic field. Figure 265

summarizes for all four cavity L/D's the maximum acoustic pressure variations

for various operating conditions as a function of Mach number. The highest

SPL was measured in the L/D = 5.6 cavity at M.. = 1.5. The results for the L/D

6,2 cavity were quite similar. Apparently the maximum SPL values always

peaked at M. = 1.5, decreasing rapidly toward higher Mach numbers. A properly
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selected suppression fence can be very effective in reducing the maximum SPL

values, however, as Figure 265 (d) illustrates, a wrong suppressor can, in

fact, raise the acoustic pressure. Increasing the Reynolds number at M= = 2.3

also increases the SPL. Figure 265 (b) proves the extreme sensitivity of the

maximum pressure to Mach number variation in the subsonic velocity range.

The experimental data plotted in Figure 265 show that the maximum rms

pressure on the rear bulkhead can be strongly dependent on the test Reynolds

number. For example, for the L/D = 5.1 cavity at M_ = 2.3 the maximum SPL

rose by over 4 dB , when the Reynolds number was raised from 2.9 x 106 /ft to

3.9 x 106 /ft, while holding the Mach number and total temperature constant. A

comparison of the frequency spectra for these two data points, shown in

Figures 266 and 267, clearly shows that the increase in the SPL was brought

about not by amplification of modal peaks but by raising the broadband

background level.* The latter is primarily due to amorphously oriented

dipoles at the leading and trailing edges of the cavity. Previous research

(e.g., in Reference 6) show that the sound pressure produced at cavity edges

is proportional to the density of the flow medium. It is self evident that a

variation in Reynolds number, while holding the Mach number and total

temperatures constant is tantamount to a variation in density, or pressure.

With the velocity kept invariant, a change in Reynolds number is directly

proportional to a change in Q. The latter therefore constitutes a natural

parameter for nomdimensionalization. That this indeed is the case is proven

in Figures 268 - 271 where the two data points were moved within 1.5 dB from

each other, which can be considered to be within the range of experimental

error and repeatability.

The results shown in Figure 265 have been replotted in Figures 268 - 271

for Q as the reference pressure. Plotted in this manner, the data have a

tendency to collapse better than with the standard acoustic reference

pressure. The fall-off with Mach number above M. = 1.5 appears to be more

gradual. Figures 268 - 271 (b) contain one data point corresponding to test

conditions involving the saw-tooth fence and the placement of a total head

tube in the cavity. From these figures, the presence of the total head tube

obviously had no effect on the maximum acoustic pressure. This question is

discussed in detail in Section V.

This was found to be true also for other L/D cavities.

6lardin, J.C., "Airframe Self Noise-Four Years of Research," in AGARD
Lecture Series No. 80, Aerodynamic Noise, AGARD-LS-80, 1977.

22



Plotted as circles In Figure 269 are also three points from Reference 1.

Since the data in that reference were not subjected to a 100 Hz highpass

filter, they were adjusted to the present ordinate scale by reducing the

fluctuating pressure values by the same amount, as was found to be attribu-

table to the filter at M,. = 0.7 in the present experiments. As expected, the

Reference 1 data agree well with the new measurements.

Effect of the Total Head Tube on the Acoustic Pressure Distributions

The placement of a total head tube into the cavity shear layer, or more

precisely into the plane of the L/D = 5.6 cavity opening at its center, had

dual purposes. First, it was emplaced to see if its presence would distort

acoustic and static pressure measurements; second, its purpose was to take

some preliminary total head data in the shear layer.

Subsonic

At subsonic tunnel Mach numbers (Figures 272 - 276) the effect of the

total head tube was to lower the SPL readings by less than about 1.5 dB, which

is considered to be within the range of reproducibility of the test results

and experimental error. This small difference was found both with and without

the sawtooth suppression fence, the difference being smaller without the

fence.

Supersonic

At supersonic tunnel Mach numbers (M,. =1.5 and M. = 2.3) the effect of

the total head tube was less than 1 dB (Figures 277 - 279); there is no

discernable effect for M. - 1.5. This finding applies to tests with and

without suppression fence and the boundary layer trip. No acoustic data were

taken with the total head tube installed at M. = 3.

Cross-correlations

Since up to 12 oscillating pressure signals were tape-recorded on a

single analogue tape recorder, cross-correlations were carried out between a

reference signal from a pressure transducer in the forward portion of the

cavity and other transducer signals. Although after a lengthy learning period

we were able to obtain many well defined cross-correlations between narrowly

filtered modal frequency peaks, the findings did not produce a clear picttr

of the pressure wave pattern within the cavity. There were numerous
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inconsistencies in the derived wave propagation speed and their direction.

Having reached no definite conclusions based on the cross-correlation work, we

present no results from this phase of our work.

A likely reason for our difficulties is that we did not precalibrate the

transducers with the respective signal amplification and recording channels

using a simple source driver at different frequencies.
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Section IV

ANALYSES & COMPARISONS

AERODYNAMIC DATA

All of the flows discussed here are for relatively shallow cavities (L >

5D). However, there are both "open" and "closed" shallow cavity flows

(Reference 7). A closed cavity flow is one for which the shear layer flow

reattaches to the cavity ceiling prior to separating ahead of the downstream

corner of the cavity. An open cavity flow is one for which the shear layer

flow bridges the cavity; the free shear layer does not reattach to the cavity

ceiling in this case. Charwat et al (Reference 7) established criteria for

open and closed flows over shallow cavities for supersonic flows. Using their

criteria, only the L/D = 9.9 cavity should experience closed flow for Mach 1.5
and 2.3 free stream flows. Data shown in Figures 87, 88, 115 - 117, 143, 144,

164, and 165 support their conclusions.

PREDICTION OF FREQUENCY MODES FOR OSCILLATORY PRESSURES

The available prediction method for the possible frequencies at which

oscillatory pressure peak moCas can occur is based mainly on References 8 and

9. A review of this method showed that the method could be improved by
incorporating an empirical dependence of the cavity shear layer velocity on

the Mach number. An estimate of this relationship was available from the
total head tube measurements taken during the course of the experiments

reported herein. As shown in Table V, the inclusion of this refinement

noticeably improved the predictability of mode frequencies, especially for the

higher modes. Since the background of the method and its details are fully

described in Reference 10 , its essential features will be only sketched out

here.

7Charwat, A.F., Roos, J.N., Dewey, F.C. and Hitz, J.A., "An Investigation of
Separated Flows, Parts I and I1," J. Aero. Sci., Vol 28, Nos. 6 and 7, June
and July 1961.

8 Rossiter, J.E. , "Wind Tunnel Experiments on the Flow Over Rectangular
Cavities at Subsonic and Transonic Speeds," RAE TR 64037, October 1964.

9Heller, H.H., HolmesG., and Covert, E.E., " Flow Induced Pressure
Oscillations in Shallow Cavities," AFFDL-TR-70-104, December 1970.

25



Our method for oscillatory mode frequency prediction can be viewed as a

fairly straightforward refinement of the Rossiter (Reference 8) prediction

model based on his original feedback loop idea. Rossiter envisioned a vortex

train leaving the cavity leading edge and travelling towards the rear edge at

the shear layer velocity. Once these vortices hit the rear edge, they produce

upstream propagating acoustic waves travelling at the local speed of sound.

When these sound waves hit the forward edge, they immediately trigger the

release of new vortices, thus completing the feedback loop. The finer points

(or the missing links) in this formulation are at least three: what is the

shear layer velocity for a given set of flow conditions, what is the static

temperature inside the cavity and what phase shift is to be allowed between

the vortex hitting the rear cavity edge and the generation of the acoustic

wave? The last question was answered experimentally by Rossiter himself.

Although his Mach number range did not extend above 1.2, his cavity L/D ratios

did cover our cavities, as shown in Table I11, taken from Rossiter's paper.

TABLE III

L/D Y(L/D)

4 0.25
6 0.38
8 0.54
10 0.58

To inmart some physical meaning to the phase shift parameter y(L/D), we

simply recall that in Rossiter's model a vortex is located y(L/O)X downstream

of the cavity trailing edge at the instant when the reference acoustic wave

leaves the source at the rear edge. X is the spacing of the vortices.

Heller et al. (Reference 9) showed that the cavity static temperature was

approximately equal to the free stream total temperature. We have

substantiated this experimentally in the experiments reported herein. Two

thermocouples were flush-mounted in the cavity ceiling at the locations

indicated in Figure 6. The following tabulation lists the various measured

temperatures and the conmuted T' /Ts ratios for the L/D 5.6 cavity over the

Mach number range covered in the experiments:

26il-



TABLE IV

Temperature, OR

M. Ts T_0 T, T2  Ts_/Ts

0.6 525 562 560 548 -

0.7 512 562 552 541 -

0.74 507 563 551 547 -
1.5 392 568 i 539 545 1.013
2.3 269 557 528 543 1.014
3.0 198 567 526 535 1.024

In Table IV, Ts and TO are the tunnel static and total temperatures, T!

and T2 are the cavity wall temperatures, and Ts' is the static temperature

behind the oblique shock emanating from the leading edge of the model.

Keeping in mind that the model represents a heat sink and that the Mach number

inside the cavity is always low, Table IV shows that the assumption that the

cavity static temperature is To is reasonably good for the computation of the

local speed of sound, which is proportional to its square root. Our

contribution to the prediction method is in using an experimentally

determined shear layer vs Mach number dependence. Previous investigetors used

an empirical constant for that value. We also retained Rossiter's

experimentally determined variation of the phase shift factor. In the

modified Rossiter method a constant number serves that purpose.

As derived in detail in Reference 10, our formula for the possible

oscillatory frequency modes is:

Ulm-Y(L I

L 1] (3)07

where U is the free stream velocity, m is the mode number, y(L/D) is the phase

shift function, L is the cavity length and K(M.) is the ratio of the shear

layer to the free stream velocities. The experimentally determined K(M.)

values were:

1'qaciulaitis, A., "Improved Prediction of Frequency Modes for Peak
Amplitude Pressures in Simulated Bomb Bays at Mach 0.6 to 3.0," Grumman
Aerospace Corporation, Research Department Memorandum RM-708, June 1980.
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M.M

0.60 0.617
0.70 0.681
0.74 0.681
1.50 0.7285
2.30 0.622

Since no K(M.) values were measured at M. = 3, we used the K(2.3) value for

this case. Note that although the K(M0 ) values were determined in the L/D =

5.6 cavity, the same values were used to predict the modal frequencies in

cavities having L/D ratios from 5.1 to 9.9. Equation (3) was used to predict

the frequency modes throughout the present report.

COMPARISON OF MEASURED AND PREDICTED OSCILLATORY PRESSURE FREQUENCIES

As explained in the preceding section, using the experimentally

determined total heads in the cavity shear layer, we have improved on the

existing method for predicting at which frequencies modal peaks are

possible. These predictions were already indicated in Figures 253 - 261. A

cursory examination of figures shows that in most instances the agreement

between predicted and measured acoustic pressure modal peaks is good-to-

excellent. We have carried out such comparisons for all our acoustic data and

compared our predictions with those using two older prediction schemes.
Figures 280 - 283, which includes data for all four L/D cavities tested, show

our prediction method to yield the best agreement with experimental data,

especially for the higher modes.

To provide a ready overview over the findings we have prepared a summary

table (Table V). Note that for each mode two columns are provided, one for

the best agreement with test data, the other for an agreement within ± 5% of

the respective frequency. Letter H identifies the so-called "Modified

Rossiter" prediction, as proposed by Heller et al. , Reference 8. The totals

and grand totals in this table show that our prediction method is the best and

that its relative merits increase for the higher frequency modes. The
importance of the latter finding has been demonstrated by our experimental

results, which clearly indicated the importance of thp higher modes for some

test conditions. For instance, Figures 253, 254 and 261 illustrate the

predominance of the third mode on the rear cavity bulk head, while Figure 257

shows the importance of the fourth mode. Cledrly any empirical amplitude

prediction method that considers the second mode as the dominant one could not
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yield accurate results in these cases. More importantly, in trying to

understand the phenomena present in a cavity flow it is misleading to start

out a priori with the assumption that the two lowest modes are the only ones

worth considering. Careful test results prove that this is simply not always

so. This point has been missed by some previous Investigators who maintdinr

that only the lowest modes are of any importance.
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Section V

CONCLUSIONS

Basic static and oscillatory pressure data were obtained for flows over
rectangular cavities in a flat plate model for 0.6 < M. < 3.0. Effects of

acoustic suppression devices (fences) and the presence of total pressure

probes were ascertained.

Static pressure distributions characteristic of both open and closed

cavity flows, depending upon Mach number and cavity geometry, were

observed. Further work is required to improve methods for estimating the
pressure distributions in cavities. At supersonic flight speeds the pressures

on the aft bulkhead are increased above static free-stream values, indicative

of an increase in aircraft drag.

Asymmetric flows were observed for some flow conditions and cavity

geometries. The effects of asymmetric flows on the cavity side wall static
pressures require further investigation.

The aeroacoustic environment represents a complicated, three-dimensional

situation even for the case of simple shallow rectangular cavities. Whereas

the frequencies at which oscillatory cavity pressure modes are possible can
now be predicted with improved precision, it is still not possible to predict
which of these modes will actually occur, and how each will vary within the

cavity. Improved techniques are also needed for prediction of SPL levels of
modal peaks and of broadband background noise. At supersonic speeds our test

data indicate that increasing the Reynolds number increases the sound pressure
level by increasing the broadband noise level, while the modal peaks remain

essentially unaffected.

If a trial and error approach is to be avoided in the development of

effective and aerodynamically acceptable aeroacoustic suppression devices for
real weapons bays, the fundamental aeroacoustics phenomena of cavities must be

better understood (Reference 11). Detailed surveys of the shear layer flow

and of the phase relationships of the acoustic waves are two areas of

1IClark, R.L., "Evaluation of F-111 Weapon Bay Aeroacoustic and Weapons
Separation Improvement Techniques," AFFDL-TR-79-3003, Februacy 1979.
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particular interest. The present work has established the feasibility of using

a total head tube right in the shear layer; therefore, complete velocity

traverses at several axial positions in the bomb bay cavity could be

performed. Cross-correlations between modal frequencies at different cavity

positions may provide valuable insights into the acoustic wave behavior. Such

cross-correlation work should be preceded by a proper calibration of all

recording channels starting from the pressure transducers.

I, I
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I
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II LIC - 5.067
o - 0.9375 IN.
L " 4.750 IN.

b) LID - 5.583
O - 1.50 IN.
L -9,375 IN.

c) LID - 6.167
o " 1.50 IN.
L = 9.25 N.

d) LID - 8.933

o : 0.9375 IN.
L - 8.375 IN.

e) L/D - 9.867
D - 0.9375 IN.
L - 9.25 IN.

0934-001(T)

Figure 3 Cavity Lengths and Depths
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a) 0 = 0.9375 in., L . /5i) n.

b) 0 = 1.50 in., L P.)!'- in.

c) D = 0.9375 in., L .250I it.

Fiqure 4 Photoqraphs of Cavity Flow >Im1ell Confiqurations
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Figure 8 Forward-Facing Total Pressure Probe attached to Ceiling
of L/D 5.6 Cavity
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Figur'e 9 Photographs of Cavity Flow Model in Test Section of AFFOL
Trisonic Gasdynamics Facility with Mach 3.0 Nozzle Blocks
Installed (page 1 of 2)
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Figure 9 Photographs of Cavity Flow Model in Test Section of AFFDL
Trisonic Gasdynarnics Facility with Mach 3.0 Nozzle Blocks
Installed (page 2 of 2)
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Figure 28 Oil Drop Pattern Prior to Test Run, LID =5.6 Cavity

Figqure 29 Oil Flow in L/E) 5.6 Cavity at M_ 0.75), Cell iri
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Figure 30 Oil Flow in L/D 5.6 Cavity at M. 0.75, Port Side

Figure 31 Oil Flow in L/D =5.6 Cavity at =0.75, Starboard Side
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Figure 35 Oil Drop Pattern Prior to Test Run, [./.- -. t) Cavity with Saw-Tooth
Fence

Figure 36 Oil Flow in L/D 5.6 Cavity with Yt1w-Lrth Fence, M - 0.70,
Ceil ing
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Figure 37 Oil Flow in L/D 5.6 Cavity with Saw-Tooth Fence, M_ .0
Port Side

Fiqure 38 Oil Drop Pattern Prior to Test Rijn, L/P 5.6 Cavity with Portorated
Fence



Figure 39 Oil Flow in L/D =5.6 Cavity with Perforated F ence, M, 0.70,
Ceiling

Figure 40 Oil Flow in L/D =5.6 Cavity with Perforated Fence, M_= 0.70,
Port Side
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Figure 67 Oil Flow in L/D 9.9 Cavity at M~=0.70, Ceilinq

Figure 68 Oil Flow in L/D =9.9 Cavity at M., 0.O*70, Starboard Side
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Figure 77 Schlieren Flow Photograph, L/D = 9.9 Cavity with Boundary Layer
Trip and Perforated Fence, M. = 0.70

L0- '4

Figure 78 Schlieren Flow Photograph, LID = 9.9 Cavity with Boundary Layer
Trip and Saw-Tooth Fence, Moo = 0.70
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Figure 79 Oil Drop Pattern Prior to Test Run, L/D = 9.9 Cavity with
Boundary Layer Trip and Perforated Fence

Ip

Figure 80 Oil Flow in L/D = 9.9 Cavity with Boundary Layer Trip and
Perforated Fence, M, - 0.70, Ceiling View 1
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Figure 81 Oil Flow in L/D 9.9 Cavity with Boundary Layer Trip and
Perforated Fence, M,, 0.70, Ceiling View 2

Figure 82 Oil Flow in L/D =9.9 Cavity with Boundary Layer Trip and
Perforated Fence, M.~ 0.70, Starboard Side
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Figure 85 Schileren Flow Photograph, L/D =5.1 Cavity, M., 1.5

Figure 86 Schlieren Flow Photograph, L/D =5.1 Cavity, Saw-Tooth Fence,
MO = 1. 5
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Figure 89 Schlieren Flow Photograph, L/D 5.6 Cavity, M = 1.5

Figure 90 Schlieren Flow Photograph, L/D 5.6 Cavity, Saw-Tooth Fence,
1.5
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Figure 91 Oil Drop Pattern Prior to Test Run, L/D = 5.6 Cavity

Figure 92 Oil Flow in t./D =5.6 Cavity at M 1.5, Forward Portion
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"I.2

Figure 93 Oil Flow in L/D = 5.6 Cavity at M = 1.5, Aft Portion

II
ii

Figure 94 Oil Flow in L/D =5.6 Cavity at M.= 1.5, Port Side
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Figure 95 Oil Drop Pattern Prior to Test Run, LID =5.6 Cavity with

Perforated Fence

I-

Figure 96 Oil Flow in L/D 5.6 Cavity, Perforated Fence Attached,

Mo= 1.5, Ceiling
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Figure 97 Oil Flow in L/D 5.6 Cavity, Perforated Fence Attached,
M. 1.5, Starboard Side

Figure 98 Oil Flow in LID 5.6 Cavity, Perforated Fence Attached,
M 1.5, Port Side
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Fiqure 99 Oil Pattern Prior to Test Run; L/1) 5.6 Cavity with Saw-Tooth Fence

Figure 100 Oil Flow in L/D =5.6 Cavity, Saw-Tooth Fence Attached,

M ,= 1.5, Ceiling

Fiqure 101 Oil Flow in L/D = 5.6 Cavity, Saw-Tooth Fence Attached,
M, 1.5, Port Side
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Fiq'irp 104 Schlieren Flow Photograph, L/D 5.6 Cavity, Forward-Facing Total
Pressure Probe, M 1.5

Figure 105 Schlieren Flow Photograph, L/D =5.6 Cavity, Saw-Tooth Fence
and Formard-Facing Total Pressure Probe, M~,,= 1.5
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L F

Figure 109 Schlierefl Flow Photograph, L/D 5.6 Cavitj with Saw-Tooth Fence

and Aft-Facing Total Pressure Probe,* M.= 1.5

Figure 110 Schlieren Flow Photograph$ L/D 5.6 Cavity with Aft-Facing Total

Pressure Probe, M.0 = 1.5
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tt

Figure 114 Schlieren Flaw Photograph, LID =6.2 Cavity with Saw-Tooth Fence,

M.= 1.5
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L-
Figure 118 Schlieren Flow Photograph, L/1 = 9.9 Cavity, M = 1.5

46

Figure 119 Schlieren Flow Photograph, L/D 9.9 Cavity, Model Pitched Nose

Up 3/40 M,= 1.5

N -- -

Figure 120 Schlieren Flow Photograph, L/D r 9.9 Cavity with Saw-Tooth Fence,

M = 1.5
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Figure 121 Oil Drop Pattern Prior to Test Run, LID =9.9 Cavity

tF.1

Figure 122 0i1 Flow in L/D =9.9 Cavity, M.,= 1.5, Ceiling
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Figure 123 Oil Flow in LID =9.9 Cavity, M,. 1.5, Port Side

4WI

Figure 124 Oil Flow in L/D =9.9 Cavity, M 1.5, Starboard Side
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Figure 125 Oil Drop Pattern Prior to Test Rtin, L/D =9.9 Cavity, Perforated

Fence Attached

13b
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Figure 126 Oil Flow in L/D : 9.9 Cavity, Perforated Fence Attached,
M = 1.5, Ceiling

oil

Figure 127 Oil Flow in L/D = 9.9 Cavity, Perforated Fence Attached,
Moo= 1.5, Starboard Side
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Figure 128 Oil Drop Pattern Prior to Test Run, L/D 8.9 Cavity, Perforated

Fence Attached

Figure 129 Oil Flow in L/D =8.9 Cavity, Perforated Fence Attached,

M.o 1.5, Ceiling
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Figure 130 Oil Flow in L/D = 8.9 Cavity, Perforated Fence Attached,
M ,= 1.5, Starboard Side

I

-IMF-

Fiqure 131 Oil Flow in L/D = 8.9 Cavity, Perforated Fence Attached,
M 1.5, Port Side
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Fiure 132 911 Drop Pattern Prior lo lo..t 1 .n, [/9 K.Cavity,
Saw-Tooth Fence Attached.



Figure 133 Oil Flow in Lit) 9.9 Cavity, Saw-Tooth Fence Attached)
Mm= 1.5, Ceiling

Figure 134 Oil Flow in L/D 9.9 Cavity, Saw-Tooth Fence Attached,
M = 1.5, Port Side
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Fi gure 139 Schlijeren Fl ow Photograph, LID =5. 1 Cavi ty, M.= 2. 3,

Re/106 =2.9

4L.

Figure 140 Schileren Flow Photoqraph, LID 5.1 Cavity, M.- 2.3,
Re/106 =3.9
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Figure 141 Schlieren Flow Photograph, L/D =5.1 Cavity with Saw-Tooth Fence,
M,.= 2.3, Re/10 6  3.0

Figure 142 Schlieren Flow Photograph, L/D 5.1 Cavity with Saw-Tooth Fence,
M. = 2.3, Re/106 =3.6
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Figure 148 Schlieren Flow Photograph, L/D 5.6 Cavit-y, M, 2.3

Figure 149 Schlieren Flow Photograph, L/D =5.6 Cavity with Boundary Layer
Trip, M. 2.3
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Figure 150 Schlieren Flow Photograph, L/D = 5.6 Cavity with Boundary Layer

Trip and Perforated Fence, M = 2.3, Run 1

Figure 151 Schlieren Flow Photograph, L/D = 5.6 Cavity with Boundary Layer

Trip and Perforated Fence, M = 2.3, Run 2

Figure 152 Schlieren Flow Photograph, L/D = 5.6 Cavity with Boundary Layer

Trip and Saw Tooth Fence, M. = 2.3
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Figure 154 Schlieren Flow Photograph, L/) : 5.6 Cavity with Boundary Layer
Trip and Forward Facing Probe, M- = 2.3
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Figure 157 Schlieren Flow Photograph, LID =6.2 Cavity, M. 2.3
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Figure 162 Schlieren Flow Photograph, LID =6.2 Cavitt with Boundary Layer
Trip and Perforated Fence, M. = 2.3, Re/lOb = 2.9

Figure 163 Schlieren Flow Photoqraph, L/D 6.2 Cavity with Boundary Layer
Trip and Perforated Fence, M 2.3, Re/lOo = 3.9
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Figure 166 Schlieren Flow Photograph, L/D =9.9 Cavity, M., 2.3

Figure 167 Schlieren Flow Photograph, L/D =9.9 Cavity with
Boundary Layer Trip, M. = 2.3
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Figure 169 Schlieren Flow Photograph, L/D 9.9 Cavity with
Boundary Layer Trip and Perforated Fence, M., 2.3
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Figure 172 Schileren Flow Photograph, LID =9.9 Cavity with Boundary Layer
Trip and Saw-Tooth Fence, M. 2.3, Time Ti

Figure 173 Schlieren Flow Photograph, L/D = 9.9 Cavity with Boundary Layer
Trip and Saw-Tooth Fence, M = 2.3, Time T2
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Figure 174 Schlieren Flow Photograph, LID 9.9 Cavity with Boundary Layer
Trip and Saw-ToIth Fence, M, 2.3, Time T3

Figure 175 Schlieren Flow Photograph, L/D = 9.9 Cavity with Boundary Layer
Trip and Saw-Tooth Fence, M, = 2.3, Time T4
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Figure 179 Oil Flow on, Ceiling of L/D =5.1 Cavity, M,. 3.0

Figure 180 Oil Flow on Port Side of L/D =5.1 Cavity, M = 3.0
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Figure 183 Oil Flow on Ceiling and Port Side of LID =5.1 Cavity, Perforated
Fence Attached, M.. 3.0, Photograph

Figure 184 Oil Flow on Ceiling and Port Side of L/D 5.1 Cavity, Perforated
Fence Attached, M_ = 3.0, Photograph 2

178



P, S..

-~~~ X~.-0a

0 Q0

ci IC
0~

00

0 S0
'4-

UX

4-)

uO.

0 t

H. - 0

(3) C- L

ILI-
liii I -~N

CL-

179



Figure 186 Schlieren Flow Photoqraph, L/IE 5.1 Cavity with Boundary Layer
Trip, M. 3.0

Figure 187 Schlieren Flow Photograph, L/D = 5.1 Cavity with Boundary Layer,
Trip and Perforated Fence, tt, = 3.0

Figure 188 Schlieren Flow Photograph, L/D 5.1 Cavity with Boundary Layer,
Trip and Saw-Tooth Fence, M4, = 3.0
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Figure 191 Oil Flow oa Ceiling and Port Side of L/D = 5.6 Cavity, MT 3.0

Figure 192 Oil Flow on Ceiling, Port Side and Aft Bulkhead of LID =5.6

Cavity, M_ = 3.0

183



M >0o

Q 0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ oo •

00

o 0I I-<]>

0 0 X ]
LO -

CQ Nm

LO -4 ý- 0 N

>I
oc

a CC) 0 D =

(n C\2 0-

0

0 • 0II I I >. '-I
LL_

u to

o~I-

S_!

0 0 C

00O

0 I,

oo CV~ L.

- ' - -N 0 0v
I -

C.)

184



1>0

oo 11

00

C >< 0

0 0 1

0 0)s

.0 LO 0

Zq 0 OliLi

LLI

185



Figure 195 Schlieren Flow Photograph, LID 5.6 Cavity with Boundary Layer
Trip, Mc. 3.0

~..;roI".

Figure 196 Schlieren Flow Photograph, L /D 5.6 Cavity with Boundary Layer
Trip and Perforated Fence, M =3.0
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Fiqure 198 Schlieren Flow Photograph, L/D = 5.6 Cavity with Boundary Layer
Trip and Saw-Tooth Fence, r 3.0
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l!.

:igure 200 Schlteren Flow Photograph, L/D 5.6 Cavity with Boundary Layer
Trip and Forward Facing Probe, M= 3.0

4

Figure 201 Schlteren Flow Photograph, L/D =5.6 Cavity with Boundary Layer
Trip and Forward Facing Probe, Model Pitched 5 Degrees Nose Up
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Figure 206 Schlieren Flow Photograph, L/D =6.2 Cavity with Boundary Layer
Trip, M. 3.0

Figure 207 Schlieren Flow Photograph, L/D 6.2 Cavity with Boundary Layer

Trip and Perforated Fence, M 3.0
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Fiqure 210 Oil Flow an Ceiling and Port side of LiD 9.9 Cavity, M. =3.0

Figure 211 011 Flow on Ceiling and Starboard Side of LID =9.9 Cavity,
It=3.0
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77"-

Figure 214 Schlieren Flow Photograph, L/D =9.9 Cavity with Boundary Layer
Trip, *M,,= 3.0

Figure 215 Schlieren Flow Photograph, Lit) 9.9 Cavity with Boundary Layer
Trip and Perforated Fence, M.0  3.0
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Figure.253 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectra at 3 Locations in L/D = 5.6 Cavity at M= 0.6. (Theoret-

i~cally predicted frequencies are indicated by dashed lines.)
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Figure 254 Effects of Cavity Oscillation Suppressor Fence on Frequency
* Spectra at 3 Locations in L/D = 5.6 Cavity at M = 0.7. (Theoret- :

ically predicted frequencies are indicated by d~'shed lines.) -
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Figure 255 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectra at 3 Locations in L/D = 5.6 Cavity at M,,= 0.74. (Theoret-
ically predicted frequencies are indicated by dashed lines.)
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Figure 256 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectra at 3 Locations in L/D = 5.6 Cavity at M,= 1.5. (Theoret-

*cally predicted frequencies are indicated by dashed lines.)
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Figure 257 Effects of Cavity Oscillation Suppressor Fence on Frequency

Spectra at 3 Locations in L/D = 5.6 Cavity at M = 2.3. (Theoret-
ically predicted frequencies are indicated by &ashed lines.)
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Figure 258 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectra at 3 Locations in L/D - 5.6 Cavity at M,= 3.0. (Theoret-
ically predicted frequencies are indicated by dashed lines.)
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Figure 260 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectru at 3 Locations in L/D = 6.2 Cavity at M = 1.5. (Theoret-
Ically predicted frequencies are indicated by dashed lines.)
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Figure 261 Effects of Cavity Oscillation Suppressor Fence on Frequency
Spectra at 3 Locations in 1/B 9.9 Cavity at Mc3 1.5. (Theoret-
ically predicted frequencies are indicated by dashed lines.)
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Figure 265 Maximum Acoustic Pressure Variations with Mach Number

for Four LID Values
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Figure 266 Pressure Spectrum on the Rear Bulkhead of L/D = 5.1
Cavity for M. = 2.3 at Re 2.9 x 106 /ft
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Figure 268 Mach Number Dependence of the Normalized Maximum Acoustic
'Pressure in the L/D = 5.1 Cavity
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Figure 269 Mach Number Dependence of the Normalized Maximum Acoustic
Pressure in the L/iD = 5.6 Cavity
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Figure 270 Mach Number Dependence of the Normalized Maximum Acoustic
Pressure in the L/D = 6.2 Cavity
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Figure 271 Mach Number Dependence of the Normalized Maximum Acoustic
Pressure in the L/D a 9.9 Cavity
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